王曉峰說,在他們的太陽能電池中,作為原料的人工葉綠素衍生物是將廣泛存在于自然界中的葉綠素原料進行簡單的化學修飾獲得。
電池的制備也相對簡單。葉綠素衍生物經過抽取和提純后,溶于有機溶劑中,利用勻膠機旋涂在導電玻璃表面,通過控制轉速和旋涂時間來控制葉綠素衍生物薄膜的厚度。同樣的旋涂方法在葉綠素衍生物薄膜的上下層分別旋涂電子傳輸層和空穴傳輸層或其他有機活性層,最終在其頂層利用金屬蒸發鍍膜機沉積金屬電極。
“由于整個制作過程對外部環境要求不嚴格,因此適于規模化生產。”王曉峰坦言,“用導電玻璃基板的人工葉綠素電池成本估計每平方米100元,比依賴高分子材料的有機光伏和鈣鈦礦電池便宜。”
光合作用包含光反應和暗反應階段。王曉峰等人的工作主要集中在光反應階段,后續暗反應可以是通過鉑/TiO2—光催化反應還原二氧化碳來制取有機物。
在地球的另一端,來自德國與法國的合作團隊,5月8日在美國《科學》期刊上發表論文,使用微流控技術在細胞尺寸大小的液滴中整合和封裝光合膜來制備仿生葉綠體,并通過調整液滴內部成分以及使用光作為外部觸發器來對仿生葉綠體進行編程和控制。
“這項工作主要創新在于人工暗反應過程。”王曉峰說,“但是這個體系并沒有解決光反應過程的人工構筑,依然使用了天然的葉綠體。”他認為,由于天然葉綠體的蛋白質骨架在體外環境下不穩定,會影響這項成果的實際應用意義。
“如果這一工作能夠結合我們的葉綠素生物電池體系模擬光反應過程,可能更有現實意義。”王曉峰說。
幸運的少數
王曉峰認為,由于人工葉綠素太陽能電池的材料消耗少、質量輕、能耗較少、成本低廉且環境友好,有利于模塊化大面積生產,未來有望取代傳統硅太陽能電池成為光伏發電的主流。
“我覺得最有意思的應用莫過于與有機農業結合,用葉綠素電池給有機農業種植提供照明能源。”王曉峰說。由于人工葉綠素太陽能電池透光性好,可用于汽車頂篷、窗戶和建筑屋頂來增加收集太陽能的可用表面積。由于人工葉綠素太陽能電池的制備方式簡單,也可以利用柔性基底將其制備成可穿戴的電子設備,為智能生活添磚加瓦。
“經常聽聞藍藻對水域的污染,殊不知藍藻也是很好的葉綠素電池生產原料。我們完全可以變廢為寶。”王曉峰說。
而用他們的人工葉綠素太陽能電池水解制氫的話,樂觀估算,“按照中試程度,廠房都算進去,未來成本渴望實現10~20元/公斤。這一成本效率比當前的普通光催化體系高3~4倍”。
然而,同其它類型光伏電池相比,全葉綠素太陽能電池是一條人跡罕至的小徑,研究者相對較少,其研發重要性有待更多人了解和參與。
“我們是少數,也是幸運的少數。”王曉峰說,“當初有機聚合物太陽能薄膜剛出來的時候效率只有1%。在經過長期的優化后,現已能達到15%~16%。”
通過對光譜范圍、填充因子、光伏電壓和導電材料等的進一步優化,全葉綠素太陽能電池體系的確還有潛力可挖。王曉峰相信在越來越多的研究者注意并開始研究人工葉綠素太陽能電池后,其商用化在未來5~10年就會進入關鍵期。